Breaking News

analyse 2 exercices corriges


L'ANALYSE MATHEMATIQUE donne un ensemble de regles gouvernant la manipulation des limites et des infiniment petits: regles de changement de variables, regles d'interversion de limites, regles de derivation so us Ie signe integrale, etc. On ne peut toutefois reduire I'Analyse a cette gymnastique formeJle sans perdre de vue ses objets principaux et Ie sens meme de sa demarche.

exercices corriges Intégrales Généralisées cliquez ici

exercices corriges Intégrale cliquez ici

TD 1 intégrale de reimann cliquez ici

TD 2 Intégrale de Riemann cliquez ici

Travaux dirigés de Intégral cliquez ici

TD Équations différentielles cliquez ici





Les modèles mathématiques
Les modèles mathématiques utilisés en physique conduisent le plus souvent à des problèmes pour lesquels il n’est pas possible de donner une solution explicite. Les solutions numériques sont même parfois difficiles à mettre en œuvre, particulièrement quand de petits paramètres sont présents ou quand les domaines de calcul sont très grands. 

Dans de telles situations, on peut tenter d’élaborer des modèles plus simples, soit en annulant un paramètre, soit en se limitant à l’étude d’un domaine plus petit ; les deux simplifications pouvant être combinées. Lorsque l’on annule un petit paramètre, noté de façon symbolique ε, il se peut que la solution du problème initial ne tende pas uniformément vers la solution du problème réduit quand ε → 0. On est alors confronté à un problème dit de perturbation singulière pour lesquels de grandes difficultés mathématiques peuvent se poser.