- Définitions
- Convergence et divergence des intégrales généralisées
- Intégrales généralisées des fonctions gardant un signe constant
- Intégrales généralisées des fonctions de signe quelconque
- Intégrales généralisées absolument convergentes
- Critére d’Abel
- Intégration par parties et changement de variables
Ci-dessous sont décrits brièvement les contenus des chapitres. Le chapitre 1, est une introduction aux intégrales indéfinies et leurs propriétés, ainsi que les méthodes et techniques d’intégration ; qui sont importants dans tout calcul intégral. Dans le deuxième chapitre, on s’intéresse à l’étude des intégrales définies plus précisément l’intégrale de Riemann, les sommes de Darboux, sommes de Riemann et leurs propriétés. Le chapitre trois est réservé à la résolution des équations différentielles d’ordre un ainsi que leurs différentes méthodes de résolutions. Nous abordons au chapitre quatre la méthode de résolution des équations différentielles linéaires du second ordre à coefficients constants. Ce polycopie à été établie en vue de rassembler un maximum de considération afin que l’étudiant puisse non seulement bien assimiler l’éssentiel de son cours mais aussi manipuler les applications.