Breaking News

Cours Algèbre FS S1


Module d'algèbre
Chapitre1 : L’espace euclidien IRn
Chapitre2 : Géométrie élémentaire dans IR2 et IR3
Chapitre3 : Nombres complexes
Chapitre4 : Polynômes
Chapitre5 : Fractions rationnelles

Cours de Algebre 
               
Travaux dirigés de Algebre 
              
contrôles continus Algebre 


Théorème de Zorn
On peut déduire les théorèmes de l’axiome du choix, mais l’axiome est aussi impliqué par chacun des théorèmes. On va l’admettre, mais donnons néanmoins un exemple de démonstration : le théorème de Zorn implique le théorème de Zermelo

Exercice 
Justifier : l’unicité du plus grand élément, de la borne supérieure, (sous réserve d’existence). Montrer que si A admet un plus grand élément, c’est également sa borne supérieure. Donner un exemple où la borne supérieure de A existe, mais n’est pas plus grand élément de A. 

Vocabulaire 
Examinons maintenant la relation de divisibilité dans un anneau commutatif ; à partir de maintenant, on préférera se limiter à un anneau commutatif intègre A : certaines notions pourront être définies dans des anneaux plus généraux, mais elles ont moins d’intérêt et des propriétés différentes.

Idéaux principaux 
Dans un anneau commutatif A tous les idéaux sont bilatères : on pourra se contenter de parler d’idéaux, sans plus de précision. Comme l’intersection d’une famille d’idéaux est un idéal, on peut définir l’idéal engendré par une partie S non vide de A : c’est le plus petit idéal contenant les éléments de S, intersection de tous les idéaux qui contiennent S. On peut le décrire explicitement

Remarque : 
La condition I + J = A s’exprime en disant que les idéaux sont étrangers. Par analogie avec le cas de Z, les relations d’équivalence modulo un idéal s’appellent des congruences. Le théorème chinois revient donc à résoudre un système de congruences simultanées, c’est effectivement ce qu’on trouve dans les mathématiques chinoises. Nous verrons une version particulière de ce théorème dans le cas où A est un anneau principal.


Module d'algèbre
Chapitre1 : L’espace euclidien IRn
Chapitre2 : Géométrie élémentaire dans IR2 et IR3
Chapitre3 : Nombres complexes
Chapitre4 : Polynômes
Chapitre5 : Fractions rationnelles

Cours de Algebre 
               
Travaux dirigés de Algebre 
              
contrôles continus Algebre 


Théorème de Zorn
On peut déduire les théorèmes de l’axiome du choix, mais l’axiome est aussi impliqué par chacun des théorèmes. On va l’admettre, mais donnons néanmoins un exemple de démonstration : le théorème de Zorn implique le théorème de Zermelo

Exercice 
Justifier : l’unicité du plus grand élément, de la borne supérieure, (sous réserve d’existence). Montrer que si A admet un plus grand élément, c’est également sa borne supérieure. Donner un exemple où la borne supérieure de A existe, mais n’est pas plus grand élément de A. 

Vocabulaire 
Examinons maintenant la relation de divisibilité dans un anneau commutatif ; à partir de maintenant, on préférera se limiter à un anneau commutatif intègre A : certaines notions pourront être définies dans des anneaux plus généraux, mais elles ont moins d’intérêt et des propriétés différentes.

Idéaux principaux 
Dans un anneau commutatif A tous les idéaux sont bilatères : on pourra se contenter de parler d’idéaux, sans plus de précision. Comme l’intersection d’une famille d’idéaux est un idéal, on peut définir l’idéal engendré par une partie S non vide de A : c’est le plus petit idéal contenant les éléments de S, intersection de tous les idéaux qui contiennent S. On peut le décrire explicitement

Remarque : 
La condition I + J = A s’exprime en disant que les idéaux sont étrangers. Par analogie avec le cas de Z, les relations d’équivalence modulo un idéal s’appellent des congruences. Le théorème chinois revient donc à résoudre un système de congruences simultanées, c’est effectivement ce qu’on trouve dans les mathématiques chinoises. Nous verrons une version particulière de ce théorème dans le cas où A est un anneau principal.