أقسام الوصول السريع (مربع البحث)

Examen de Analyse Ensa et Ensam S1

L’objectif de ce module est de familiariser les étudiants avec le vocabulaire ensembliste, de donner des différentes méthodes de convergence des suites réelles et les différents aspects de l’analyse des fonctions d’une variable réelle.
Examen de Analyse Ensa et Ensam S1
Examen N°1
Examen N°2 
Examen N°3 
Examen N°4 
Examen N°5
Examen N°6
Examen N°7 
Examen N°8
Examen N°9 
Examen N°10
Examen N°11
Examen N°12 





Chapitre : Les nombres réels
Les nombres réels
L’ensemble des nombres rationnels Q
Propriétés de R
Densité de Q dans R
Borne supérieure
Les suites
Définitions
Limites
Exemples remarquables
Théorème de convergence
Suites récurrentes
fonctions continues
Notions de fonction
Limites
Continuité en un point
Continuité sur un intervalle
Fonctions monotones et bijections
Logarithme et exponentielle
Fonctions circulaires inverses
Fonctions hyperboliques et hyperboliques inverses
Dérivée
Calcul des dérivées
Extremum local, théorème de Rolle
Théorème des accroissements finis




Commentaires