fonctions continues TD1
Notions de fonction
Limites
Continuité en un point
Continuité sur un intervalle
Fonctions monotones et bijections
Logarithme et exponentielle
Fonctions circulaires inverses
Fonctions hyperboliques et hyperboliques inverses
Dérivée
Calcul des dérivées
Extremum local, théorème de Rolle
Théorème des accroissements finis
Formules de Taylor
Développements limités au voisinage d’un point
Opérations sur les développements limités
Applications des développements limités
Tous les exercices sont corrigés, le plus souvent en détail, ce qui permettra aux étudiants de ne pas « sécher » sur un exercice difficile. Nous les invitons cependant à chercher par eux-mêmes les exercices avant de regarder les solutions pour ne pas se priver du plaisir de les résoudre. Nous insistons aussi sur le fait que les auteurs ne donnent pas nécessairement toutes les étapes d’un calcul lorsqu’ils considèrent que celui-ci ne pose pas de problèmes techniques. C’est bien sur aux étudiants de prendre le temps de rédiger entièrement leurs solutions.
Ce volume couvre trois sujets : les nombres réels, les suites et les séries numériques. Il ne comporte pas de problèmes concernant les espaces métriques et topologiques qui seront présentés dans le second volume.
Chaque chapitre se divise en deux parties : énoncés de problèmes et solutions. Nous donnons une solution complète dans la plupart des cas. Lorsqu’aucune difficulté ne devrait se présenter ou lorsqu’un problème semblable a déjà été résolu, seul une indication ou la réponse est donnée.
Très souvent, un problème admet plusieurs solutions ; nous n’en donnons qu’une en espérant que les étudiants en trouveront d’autres par eux-mêmes.
Nous avons une grande dette envers nos amis et collègues du département de mathématiques de l’université Maria Curie-Skłodowska qui nous ont fait des critiques constructives.
Nous avons eu de nombreuses conversations stimulantes avec M. Koter-Mórgowska, T. Kuczumow, W. Rzymowski, S. Stachura et W. Zygmunt.
Nous remercions aussi sincèrement le professeur Jan Krzyż pour son aide dans la préparation de la première version du manuscrit anglais. Nous sommes ravis d’exprimer notre gratitude au professeur Kazimierz Goebel pour ses encouragements et son intérêt actif dans ce projet.
Nous sommes aussi heureux de remercier le professeur Richard J. Libera de l’université du Delaware pour son aide précieuse et généreuse dans la traduction anglaise et pour toutes ses suggestions et corrections qui ont grandement amélioré la version finale de ce livre.
Chaque chapitre se divise en deux parties : énoncés de problèmes et solutions. Nous donnons une solution complète dans la plupart des cas. Lorsqu’aucune difficulté ne devrait se présenter ou lorsqu’un problème semblable a déjà été résolu, seul une indication ou la réponse est donnée.
Très souvent, un problème admet plusieurs solutions ; nous n’en donnons qu’une en espérant que les étudiants en trouveront d’autres par eux-mêmes.
Nous avons une grande dette envers nos amis et collègues du département de mathématiques de l’université Maria Curie-Skłodowska qui nous ont fait des critiques constructives.
Nous avons eu de nombreuses conversations stimulantes avec M. Koter-Mórgowska, T. Kuczumow, W. Rzymowski, S. Stachura et W. Zygmunt.
Nous remercions aussi sincèrement le professeur Jan Krzyż pour son aide dans la préparation de la première version du manuscrit anglais. Nous sommes ravis d’exprimer notre gratitude au professeur Kazimierz Goebel pour ses encouragements et son intérêt actif dans ce projet.
Nous sommes aussi heureux de remercier le professeur Richard J. Libera de l’université du Delaware pour son aide précieuse et généreuse dans la traduction anglaise et pour toutes ses suggestions et corrections qui ont grandement amélioré la version finale de ce livre.