Breaking News

cours Liaison chimique

À première vue, la théorie de la liaison chimique semble un bel exercice consacré à cette construction de modèle. Nous avons l’équation de Schrödinger. Nous pouvons la résoudre pour l’atome H. Nous rencontrons alors de grandes, grandes difficultés, pour obtenir des solutions pour les atomes comportant plusieurs électrons, sans parler des molécules. Est-ce pour autant que nous baissons les bras ? Certes non; nous négligeons l’interaction électron/électron et nous construisons une théorie monoélectronique des molécules, utilisant les orbitales atomiques. Puis, nous commençons à réintroduire ce que nous avons laissé en route.

Cours Liaison chimique N°1  cliquez ici
Cours Liaison chimique N°2  cliquez ici
cours Liaison chimique  N°3  cliquez ici




Notion de symétrie locale 
De très nombreuses molécules possèdent des éléments de symétrie spatiale tels que des axes de rotation, des plans de symétrie, un centre d’inversion, etc. en étroite relation avec la structure géométrique de l’ensemble d’atomes considérés. Nous allons nous servir de ces éléments pour bâtir des déterminants séculaires et montrer que leur solution dépend étroitement de la symétrie du système considéré.

Généralisation des résultats empiriques précédents 
Afin de ne pas alourdir l’exposé de cette partie, nous allons dans cette généralisation qui revêt la plus grande importance pour la suite de nos discussions accepter sans démonstration des résultats dont nous n’avons examiné qu’une approche qualitative très élémentaire. Seule la théorie des groupes permet de les justifier d’une manière très élégante et définitive. Nous en donnons un peu plus loin un aperçu qualitatif destiné à nous familiariser avec ses applications les plus simples.

Critique du modèle planétaire 
Malheureusement, le modèle planétaire est théoriquement impossible. Selon la théorie de l’électromagnétisme, les électrons qui décrivent des orbites, étant des particules chargées accélérées (car ils suivent une trajectoire non rectiligne), devraient constamment émettre un rayonnement de fréquence égale à la fréquence de rotation autour du noyau, perdant ainsi de l’énergie

À première vue, la théorie de la liaison chimique semble un bel exercice consacré à cette construction de modèle. Nous avons l’équation de Schrödinger. Nous pouvons la résoudre pour l’atome H. Nous rencontrons alors de grandes, grandes difficultés, pour obtenir des solutions pour les atomes comportant plusieurs électrons, sans parler des molécules. Est-ce pour autant que nous baissons les bras ? Certes non; nous négligeons l’interaction électron/électron et nous construisons une théorie monoélectronique des molécules, utilisant les orbitales atomiques. Puis, nous commençons à réintroduire ce que nous avons laissé en route.

Cours Liaison chimique N°1  cliquez ici
Cours Liaison chimique N°2  cliquez ici
cours Liaison chimique  N°3  cliquez ici




Notion de symétrie locale 
De très nombreuses molécules possèdent des éléments de symétrie spatiale tels que des axes de rotation, des plans de symétrie, un centre d’inversion, etc. en étroite relation avec la structure géométrique de l’ensemble d’atomes considérés. Nous allons nous servir de ces éléments pour bâtir des déterminants séculaires et montrer que leur solution dépend étroitement de la symétrie du système considéré.

Généralisation des résultats empiriques précédents 
Afin de ne pas alourdir l’exposé de cette partie, nous allons dans cette généralisation qui revêt la plus grande importance pour la suite de nos discussions accepter sans démonstration des résultats dont nous n’avons examiné qu’une approche qualitative très élémentaire. Seule la théorie des groupes permet de les justifier d’une manière très élégante et définitive. Nous en donnons un peu plus loin un aperçu qualitatif destiné à nous familiariser avec ses applications les plus simples.

Critique du modèle planétaire 
Malheureusement, le modèle planétaire est théoriquement impossible. Selon la théorie de l’électromagnétisme, les électrons qui décrivent des orbites, étant des particules chargées accélérées (car ils suivent une trajectoire non rectiligne), devraient constamment émettre un rayonnement de fréquence égale à la fréquence de rotation autour du noyau, perdant ainsi de l’énergie