Breaking News

cours sur les nombres réels

cours sur les nombres réels

Cours : Opérations et Bornes et Intervalles et Rationnels et irrationnels et Approximation des réels et Construction des bornes
Entraînement : Vrai ou faux et Exercices et QCM et Devoir et Corrigé du devoir
Compléments : Papier normalisé et La constante de Ramanujan et Nombres incommensurables et Les frères Banu-Musâ et La numérisation des raisons et Les coupures de Dedekind et Point fixe d’une application croissante


cours : les nombres réels PDF cliquez ici





Introduction
La physique moderne peut-elle se contenter des modèles mathématiques qui l’ont amenée aux confins de la connaissance de notre monde macroscopique ? Non, à l’évidence, les hommes ont besoin de réaliser des objets, de vérifier leurs théories, d’expérimenter, de simuler, d’explorer. En somme, les hommes ont besoin de chercher, de créer et de comprendre.

Actuellement, la science du mouvement, la mécanique, repose sur trois appuis qui assurent son équilibre : la modélisation mathématique, la simulation numérique et l’expérience. Or, le coût de l’expérimentation, la difficulté de la modélisation et la puissance sans cesse accrue du calcul numérique ont déséquilibré ce bel édifice au détriment de la réflexion.

L'ANALYSE MATHEMATIQUE 
donne un ensemble de regles gouvernant la manipulation des limites et des infiniment petits: regles de changement de variables, regles d'interversion de limites, regles de derivation so us Ie signe integrale, etc. On ne peut toutefois reduire I'Analyse a cette gymnastique formeJle sans perdre de vue ses objets principaux et Ie sens meme de sa demarche.

Des Ie xvme siecle les series ont ete utilisees pour definir des fonctions nouvelles. Dans un langage moderne, l'Analyse demontre des theoremes d'exlSfence en formulant les problerres dans des espaces complets convenables. Lorsqu'un resultat d'existence est precise par un theoreme d'unicite, alors, et seulement alors, la notion de solution approchee a un sens ; Ies algorithmes numeriques de caIcul des solutions approchees proviendront souvent de la demarche anterieure de l'Analyste.

cours sur les nombres réels

Cours : Opérations et Bornes et Intervalles et Rationnels et irrationnels et Approximation des réels et Construction des bornes
Entraînement : Vrai ou faux et Exercices et QCM et Devoir et Corrigé du devoir
Compléments : Papier normalisé et La constante de Ramanujan et Nombres incommensurables et Les frères Banu-Musâ et La numérisation des raisons et Les coupures de Dedekind et Point fixe d’une application croissante


cours : les nombres réels PDF cliquez ici





Introduction
La physique moderne peut-elle se contenter des modèles mathématiques qui l’ont amenée aux confins de la connaissance de notre monde macroscopique ? Non, à l’évidence, les hommes ont besoin de réaliser des objets, de vérifier leurs théories, d’expérimenter, de simuler, d’explorer. En somme, les hommes ont besoin de chercher, de créer et de comprendre.

Actuellement, la science du mouvement, la mécanique, repose sur trois appuis qui assurent son équilibre : la modélisation mathématique, la simulation numérique et l’expérience. Or, le coût de l’expérimentation, la difficulté de la modélisation et la puissance sans cesse accrue du calcul numérique ont déséquilibré ce bel édifice au détriment de la réflexion.

L'ANALYSE MATHEMATIQUE 
donne un ensemble de regles gouvernant la manipulation des limites et des infiniment petits: regles de changement de variables, regles d'interversion de limites, regles de derivation so us Ie signe integrale, etc. On ne peut toutefois reduire I'Analyse a cette gymnastique formeJle sans perdre de vue ses objets principaux et Ie sens meme de sa demarche.

Des Ie xvme siecle les series ont ete utilisees pour definir des fonctions nouvelles. Dans un langage moderne, l'Analyse demontre des theoremes d'exlSfence en formulant les problerres dans des espaces complets convenables. Lorsqu'un resultat d'existence est precise par un theoreme d'unicite, alors, et seulement alors, la notion de solution approchee a un sens ; Ies algorithmes numeriques de caIcul des solutions approchees proviendront souvent de la demarche anterieure de l'Analyste.

Aucun commentaire